Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(28): 42242-42250, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34713398

RESUMO

Heterogeneous photocatalysis is highlighted to treat volatile organic compound (VOC) emission. Then, this work analysed the influence of palladium (Pd) content loaded in TiO2 on n-octane and iso-octane photodegradation. For this, TiO2 was loaded with Pd in different contents: 0.4%, 0.7%, and 1.0%. The samples were characterized, and the photodegradation experiments were conducted by Pd/TiO2/UV process. The characterization analyses showed that the metal presence did not change the catalyst structure or its surface area; however, it reduced the bandgap energy. The photocatalytic results proved that palladium improved n-octane degradation from 62% (pure TiO2) to 92.6% (0.4%Pd/TiO2) and, iso-octane degradation enhanced from 59% (pure TiO2) to 90.6% (0.7%Pd/TiO2); all results were obtained in the space time of 39 s. Therefore, 0.4%Pd/TiO2 and 0.7%Pd/TiO2 showed better oxidation results to degradation n-octane and iso-octane, respectively. The kinetic model of pseudo-first order showed a good fit for the data of both VOCs. Heterogeneous photocatalysis with Pd/TiO2 showed to be an adequate technique to reduce VOCs emission.


Assuntos
Compostos Orgânicos Voláteis , Catálise , Octanos , Paládio/química , Titânio/química , Raios Ultravioleta , Compostos Orgânicos Voláteis/análise
2.
Environ Sci Pollut Res Int ; 28(19): 24216-24223, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33754267

RESUMO

Volatile organic compounds (VOCs) are atmospheric pollutants that can affect human healthy and intensify some environmental problems. Among different techniques to degrade VOCs, heterogeneous photocatalysis has been highlighted. The aim of this research was to obtain high toluene degradation using heterogeneous photocatalysis in the ozone presence (TiO2/O3/UV) and analyze VOC degradation over the reactor length comparing with ozone concentration also over the reactor length. Ozone concentration has influence on toluene degradation; 75% of VOC degradation was reached with 69.0 mgL-1 of O3 meanwhile a degradation of 91% was obtained with 96.2 mgL-1 of O3. Toluene degradation reached a plateau over reactor length at flowrate of 565 mL min-1, which indicates the reactor was oversized in this case. However, it was not observed at 1425 mL min-1. In addition, it was evaluated that O3 concentration and toluene reaction rate decreased over the reactor length.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Catálise , Humanos , Tolueno , Raios Ultravioleta , Compostos Orgânicos Voláteis/análise
3.
Environ Sci Pollut Res Int ; 26(5): 4234-4241, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948690

RESUMO

Volatile organic compounds (VOC) are air pollutants usually found in urban and industrial areas. Heterogeneous photocatalysis is an interesting technique used to degrade these compounds. Several approaches may enhance this process; some studies have shown higher VOC conversions by adding ozone to the experimental system, once ozone increases the number of reactive radicals in the reaction. In this context, this work studied the conversion of cyclohexane and toluene by heterogeneous photocatalysis in gas phase, in the presence of titanium dioxide (TiO2), UV light, and different concentrations of ozone. For fixed space times from 13.1 to 48.8 s, an average increase of 9% was reached in cyclohexane conversion when comparing the system with maximum concentration of ozone (0.8%) and the system without it. In addition, difference of less than 2% in the conversion of cyclohexane with different moisture fractions was observed. Toluene photodegradation was also analyzed in the presence of ozone and although the conversion was only about 40% for the space time of 25 s, this result was maintained during 4 h of experiment, with no catalyst deactivation as usually reported in the literature for aromatic compounds. Based on the results, ozone addition is an advantageous technique to improve the photodegradation of VOC.


Assuntos
Poluentes Atmosféricos/análise , Cicloexanos/análise , Ozônio/química , Titânio/química , Tolueno/análise , Raios Ultravioleta , Compostos Orgânicos Voláteis/análise , Catálise , Fotólise
4.
J Hazard Mater ; 365: 581-589, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30469038

RESUMO

Volatile organic compounds (VOCs) are responsible for environmental problems and may affect human health. Several treatment technologies minimize VOCs emissions; among those, catalytic oxidation appears as a promising alternative. In this study, a pilot-scale catalytic reactor was developed and the influence of process parameters on toluene degradation were investigated. Inlet gases were heated by electrical resistances and the catalyst employed was a honeycomb shape commercial automotive catalyst (Umicore, model AFT). Toluene degradation higher than 99% was achieved for several conditions and temperature showed to be the most important process variable for it. For all concentrations, it was observed that when increasing temperature led to a decrease on the space time. At 800 ppmv, varying from 543 K to 633 K, the space time decreased from 0.121 s to 0.08 s, respectively. At 1600 ppmv for the same temperature range, space time was reduced from 0.098 s to 0.040 s, respectively. At 2400 ppmv, varying from 543 K to 633 K, space time decreased from 0.081 s to 0.048 s. The catalytic reactor developed proved to be efficient for VOCs treatment, showing a high potential of application at industrial emission sources.

5.
Environ Sci Pollut Res Int ; 24(7): 6390-6396, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27026546

RESUMO

Heterogeneous photocatalytic oxidation systems using titanium dioxide (TiO2) have been extensively studied for the removal of several volatile organic compounds (VOCs). The addition of noble metals such as palladium on TiO2 may improve photocatalytic activity by increasing charge separation efficiency. In this work, palladium was impregnated on TiO2 and the efficiency of the new catalyst was tested and compared with that of pure TiO2. Pd was impregnated on TiO2 by the reduction method, using NaBH4, and was characterized by XRD, XPS, UV-Vis, and H2 chemisorption. The photocatalytic tests were performed in an annular coated-wall reactor using octane, isooctane, n-hexane, and cyclohexane at inlet concentrations varying from 100 to 120 ppmv. Compared with pure TiO2 film, the photocatalytic activity of TiO2 impregnated with 1 wt% of palladium was improved. All the aforementioned analytical techniques confirmed the presence of Pd incorporated into the structure of TiO2, and the conversion rates were studied in a broad range of residence times, yielding up to 90 % or higher rates in 40 s of residence time, thus underscoring the relevant contribution of the technology.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Paládio/química , Titânio/química , Raios Ultravioleta , Adsorção , Catálise , Hexanos/isolamento & purificação , Octanos/isolamento & purificação , Oxirredução , Processos Fotoquímicos , Difração de Raios X
6.
Environ Technol ; 37(12): 1480-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26581845

RESUMO

This study aimed to compare the performance of an internal combustion engine fed with blends of biodiesel produced from soybean and diesel, and blends of biodiesel produced from beef tallow and diesel. Performance was evaluated in terms of power generated at low loading conditions (0.5, 1.0 and 1.5 kW) and emission of organic and inorganic pollutants. In order to analyse inorganic gases (CO, SO2 and NOx), an automatic analyser was used and the organic emissions (benzene, toluene, ethylbenzene and xylene - BTEX) were carried out using a gas chromatograph. The results indicate that the introduction of the two biodiesels in the fuel caused a reduction in CO, SO2 and BTEX emissions. In addition, the reduction was proportional to the increase in loading regime. Beef tallow biodiesels presented better results regarding emission than soybean biodiesels. The use of pure biodiesels also presented a net reduction in pollutant gas emissions without hindering the engine generator performance.


Assuntos
Poluentes Atmosféricos/análise , Biocombustíveis , Gorduras/química , Glycine max/química , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Brasil , Compostos Orgânicos Voláteis/química
7.
J Air Waste Manag Assoc ; 65(7): 810-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26079554

RESUMO

UNLABELLED: This work presents an overview over heterogeneous photocatalysis performed in gas phase towards the degradation of o-xylene, n-hexane, n-octane, n-decane, methylcyclohexane and 2,2,4-trimethylpentane. The experimental set-up composed by a titanium plug flow reactor vessel contained a quartz tube with a 100 W UV lamp placed at center position from 1.7 cm to the quartz wall. A titanium dioxide film was immobilized on the internal walls of the reactor and used as catalyst. All measurements were taken after reaching steady state condition and evaluated at the inlet and outlet of the system. Conversion rates were studied in a wide range of residence times yielding to a 90% or above conversion as from 20 seconds of residence time. During experiments the temperature of reactor's wall was monitored and remained between 52 and 62 °C. Temperature influence over degradation rates was negligible once a control experiment performed at 15 °C did not modify outgoing results. Humidity effect was also evaluated showing an ideal working range of 10-80% with abrupt conversion decay outside the range. By varying inlet concentration between 60 and 110 ppmv the VOC degradation curves remained unchanged. Loss over catalytic activity was only observed for o-xylene after 30 minutes of reaction, the catalyst was reactivated with a solution of hydrogen peroxide and UV light followed by additional deposition of the catalytic layer. The kinetic study suggests a first order reaction rate. IMPLICATIONS: The study of effective and economically viable techniques on the treatment of volatile organic compounds (VOCs) has being highlighted as an important parameter on the environmental research. The heterogeneous photocatalysis in gas phase was proved to be an effective process for the degradation of the nonaromatic VOCs tested, yielding high conversion values for the optimized systems.


Assuntos
Gases , Fotólise , Titânio/química , Raios Ultravioleta , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/química , Animais , Bass , Catálise
8.
Eng. sanit. ambient ; 13(3): 291-297, jul.-set. 2008. ilus, tab
Artigo em Português | LILACS | ID: lil-493948

RESUMO

Este trabalho apresenta um modelo Fluidodinâmico Computacional tridimensional para simular a dispersão de substâncias solúveis em rios. O modelo pode predizer o impacto causado pela ocorrência de múltiplos pontos de emissão no trecho estudado. O código numérico para o modelo matemático foi desenvolvido em linguagem Fortran. Os resultados mostram que a metodologia proposta é uma boa ferramenta para a avaliação do impacto ambiental causado pela emissão de efluentes em rios. O software é bastante rápido, especialmente quando comparado com outros pacotes de CFD disponíveis comercialmente. Foram feitas comparações entre os resultados numéricos e dados experimentais coletados no rio Atibaia. Os resultados numéricos apresentaram uma boa concordância com os dados coletados experimentalmente.


This work presents a three-dimensional model for the dispersion of effluents in rivers using Computational Fluid Dynamics (CFD) techniques. There are several models in the literature, some of which even analyze complex flows. They are however restricted to small river sections. The main contribution of this work is that it proposes a new software capable of predicting the dispersion of effluents in very large open channels. The model is very fast, an unusual feature of CFD models. Due to this, it is possible to predict the dispersion of substances in long sections of rivers with some kilometers in extension. Moreover, multiple emissions can be analyzed by the model, allowing its use as a predictive tool to analyze and guide management decisions on future industrial installations near rivers. Results for the dispersion of an inert emission in a river near Campinas (Brazil) were used to validate the model.

9.
Environ Sci Technol ; 40(21): 6722-9, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17144302

RESUMO

The objective of this study was to improve the vehicular emissions inventory for the light- and heavy-duty fleet in the metropolitan area of São Paulo (MASP), Brazil. To that end, we measured vehicle emissions in road tunnels located in the MASP. On March 22-26, 2004 and May 04-07, 2004, respectively, CO, CO2, NOx, SO2, and volatile organic compounds (VOCs) emissions were measured in two tunnels: the Janio Quadros, which carries light-dutyvehicles; and the Maria Maluf, which carries light-duty vehicles and heavy-duty diesel trucks. Pollutant concentrations were measured inside the tunnels, and background pollutant concentrations were measured outside of the tunnels. The mean CO and NOx emission factors (in g km(-1)) were, respectively, 14.6 +/- 2.3 and 1.6 +/- 0.3 for light-duty vehicles, compared with 20.6 +/- 4.7 and 22.3 +/- 9.8 for heavy-duty vehicles. The total VOCs emission factor for the Maria Maluf tunnel was 1.4 +/- 1.3 g km(-1). The main VOCs classes identified were aromatic, alkane, and aldehyde compounds. For the heavy-duty fleet, NOx emission factors were approximately 14 times higher than those found for the light-duty fleet. This was attributed to the high levels of NOx emissions from diesel vehicles.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Combustíveis Fósseis/análise , Emissões de Veículos/análise , Movimentos do Ar , Poluentes Atmosféricos/química , Brasil , Monóxido de Carbono/análise , Veículos Automotores , Óxido Nítrico , Hidrocarbonetos Policíclicos Aromáticos/análise , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...